Marine Bacteria Share Carbon Assimilation Duties

Taxonomic differences in bacterioplankton amino acid uptake

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

MEAL TIME: Ocean-dwelling microbes chow down on marine carbon sources at rates that are taxon dependent (false-color micrograph).EDWARD DELONG, DAVID KARL, NANCY HULBIRT

The paper S. Bryson et al., “Proteomic stable isotope probing reveals taxonomically distinct patterns in amino acid assimilation by coastal marine bacterioplankton,” mSystems, doi:10.1128/mSystems.00027-15, 2016. The fixers Marine systems fix about 50 gigatons of carbon each year, of which about half is processed by heterotrophic microbial communities. But relatively little is known about the role of individual taxa in the assimilation and metabolism of carbon compounds. So Samuel Bryson, a graduate student in Ryan Mueller’s lab at Oregon State University, set out to test a method that could improve taxon-specific measurements of carbon uptake and usage. Proteomic probe Bryson and his colleagues added 13C-labeled amino acids to seawater samples of bacterioplankton collected at two different locations off the western coast of the U.S. The team ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Add The Scientist as a preferred source on Google

Add The Scientist as a preferred Google source to see more of our trusted coverage.

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

July 2016

Marine Maladies

The pathogenic effects of warmer, more acidic oceans

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Graphic of amino acid chains folded into proteins

Expi293™ PRO Expression System: Higher Yields Across a Wider Variety of Proteins

Thermo Fisher Logo