May the Best Rodent Win

Are mice, considered by some to be the less intelligent rodent, edging out rats as laboratory models of decision making?

Written byMolly Sharlach
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

RAT RACE: Viewed from above its enclosure, a lab rat pokes its nose into a device designed to test its decision-making abilities.SANTIAGO JARAMILLO

Rats are smart, and mice are dumb. For more than a century, this was the prevailing dogma among scientists who study how brains make choices based on sensory inputs—the type of researchers who train rodents to run mazes in order to uncover mechanisms of long-term memory, problem solving, and other cognitive tasks.

When Anthony Zador set up his lab 15 years ago at Cold Spring Harbor Laboratory in New York, he and his colleagues began developing “tricks to train rats.” After several years, he says, “we were pretty confident that [rats] can process sensory stimuli and make decisions about them—that they have attentional processes.” At the same time, researchers were generating a wealth of genetic and molecular tools in mice, allowing the visualization and manipulation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH