Mice Learn Faster with Human Glia

Mice with human brain cells showed enhanced synaptic plasticity and learning, suggesting glia may be key to our cognitive prowess.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, BRUNO PASCALMice that received transplants of human glial progenitor cells learned much more quickly than normal mice, according to a study published today (March 7) in Cell Stem Cell. The findings support the theory that glial cells made a significant contribution to the evolution of our own enhanced cognitive abilities.

“This work is very exciting and surprising because it demonstrates that there may be something special about human glial progenitor cells that contribute to the amazing complexity and computational abilities of the human brain,” said Robert Malenka, a neuroscientist at Stanford University who was not involved in the study, in an email to The Scientist.

For many years, glia cells, non-neuronal cells present in the same numbers as neurons in the brain, were thought to play only a supporting role, providing structure, insulation, and nutrients for neurons. But in the past 20 years it has become clear that glia also participate in the transmission of electrical signals. Specifically, astrocytes—a type of glial cell with thousands of tendrils that reach and encase synapses—can modulate signals passing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies