Mobile Microscopes

Turning cell phones into basic research tools can improve health care in the developing world.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SCOPE APP: Developed in the University of California, Berkeley, lab of Daniel Fletcher, the CellScope, here trained on an algae sample, turns the camera of a standard cell phone into a diagnostic-quality microscope with a magnification of 5x–60x.CINDY MANLY-FIELDS/BIOENGINEERING DEPARTMENT, UC BERKELEYIn some of the least-developed regions of Africa, Southeast Asia, and the Middle East, cell phones are the main mode of connecting to the wider world. Even in areas beyond government electrical grids, many people have cell phones, which they charge using solar cells or car batteries.

“You don’t have to put in these copper wires [for phone lines] anymore; you have the [cell] towers. It’s big business,” says bioengineer Daniel Fletcher of the University of California, Berkeley, who has seen cellular technology flourish in countries like Thailand and India. “It’s leaping over the need for infrastructure.”

It’s also big opportunity. Fletcher and others are developing technologies that take advantage of the 6 billion or so cell phones in use around the world to help improve health care in the most remote locations. In 2009, Fletcher and his colleagues added a set of lenses to a smart phone and used the device to image cells with both bright-field and fluorescence techniques. The resolution was high enough to diagnose malaria from blood samples ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo