Modeling the Human Lung with Organoids

A new specialized cell culture media system generates induced pluripotent stem cell-derived lung organoids that more closely resemble the diversity of cell types found in the human lung.

Written byMilliporeSigma and The Scientist
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The human lung is complex. More than 40 different types of cells comprise the human lung, including epithelial cells, nerve cells, hormone-producing cells, interstitial connective cells, blood cells, and more. Together, these cells assemble to form the complex tissue architecture of the lung from blood vessels, to alveolar structures, to the in vivo branching airway. Modeling the complete cellular diversity, dynamic molecular interactions, and structural assembly of the lung in a two-dimensional cell culture plate is simply impossible.

Lung organoids allow researchers to more accurately model the three-dimensional architecture and in vivo physiology of the human lung. Researchers use lung organoids to better understand natural lung development, as well as lung malfunction during respiratory diseases such as cystic fibrosis, asthma, and COPD. Researchers also use lung organoids to identify the molecular consequences of environmental assaults, such as air pollution or smoking. The lung is intricately involved in the disease symptoms ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research