Modified CRISPR Expands Targets

Tweaking the expression of guide RNAs used in CRISPR genome editing broadens the repertoire of target sites.

kerry grens
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

WIKIMEDIA, RHODODENDRONBUSCHThe CRISPR/Cas9 system of genome editing is exceptionally useful for finding precise sites in the genome to chop up for removing or rewriting genes. But as it stands, the guide RNAs used to home in on the right spots in the genome limit the target sequence to those starting with guanine. Vinod Ranganathan, a postdoc in Donald Zack’s lab at the Johns Hopkins University School of Medicine, and his colleagues reported today (August 8) in Nature Communications that they’ve modified the expression of guide RNAs to also recognize genomic sites starting with adenine.

“Our results enhance the versatility of the CRISPR technology by more than doublingthe number of targetable sites within the human genome and other eukaryotic species,” the team wrote in its paper.

By complementary base pairing, guide RNAs recognize a sequence starting with guanine, continuing with 20 nucleotides, then finishing up with two guanines (GN19NGG). Ranganathan’s new protocol employed a different promoter to express the guide RNA, one that could deliver a transcript with either a guanine or adenine in the first position, meaning that CRISPR can now also break into sites with the sequence AN19NGG. Such sites “occur ~15% more frequently than GN19NGG sites in the human genome and the increase in targeting space is also enriched at human genes and disease loci,” the team ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer