Molecular Imaging Pioneer, Sanjiv “Sam” Gambhir, Dies at 57

The Stanford Medical School professor’s research aided the development of positron emission tomography (PET) reporters to identify disease.

Written byLisa Winter
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © STEVE FISCH/STANFORD MEDICINE

Sanjiv “Sam” Gambhir, a giant in molecular imaging, died on July 18 of cancer at the age of 57. He was a professor and department head at Stanford University and is best known for his work developing tracers to identify abnormal cell activity using positron emission tomography (PET).

“Sam was a true visionary and a scientist of the highest caliber. His research and innovations have, with no uncertainty, founded modern medicine’s approach to early disease diagnostics and will continue to guide the future of precision health,” Stanford School of Medicine Dean Lloyd Minor says in a statement. “Sam’s contributions to Stanford, to human health, to the science of diagnostics and to the many lives he has touched and impacted throughout his career have been immeasurable.”

Born in India, Gambhir immigrated to Arizona as a young child and graduated from Arizona State University with a degree ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Lisa joined The Scientist in 2017. As social media editor, some of her duties include creating content, managing interactions, and developing strategies for the brand’s social media presence. She also contributes to the News & Opinion section of the website. Lisa holds a degree in Biological Sciences with a concentration in genetics, cell, and developmental biology from Arizona State University and has worked in science communication since 2012.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH