Mom’s Mitochondria Affect Pup Longevity

Mitochondrial mutations inherited from the mother can shorten a mouse’s lifespan.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, WHATIGUANAA person’s lifespan may be determined in part before they are even born, if research published today (October 9) in Scientific Reports translates from mice to humans. The new study shows that mitochondrial DNA mutations in the mother’s eggs can shorten her pups’ lives by approximately one third.

“The overriding importance of this kind of work is the demonstration that the mitochondrial DNA, which is maternally inherited, carries the genetic information that can be critical for longevity,” said Douglas Wallace, a professor of pathology and laboratory medicine at the Children’s Hospital of Philadelphia. Wallace was not involved in the new study, but has independently shown that maternally inherited mitochondrial mutations can influence aging, longevity, and cancer.

The new paper follows up on a study published last year in Nature, which showed, among other results, that mutated mitochondrial DNA from mom is sufficient to cause premature aging in an otherwise wild-type mouse—a finding that Gerald Shadel, a professor of pathology and genetics at Yale University, described as “a real breakthrough.”

But because of the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH