Monitoring Mitochondrial Mutations

Induced pluripotent stem cells—particularly those generated from older patients—should be screened for defects in mitochondrial DNA, a study shows.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Human fibroblasts derived from embryonic stem cells showing nuclei (blue) and mitochondria (red)SHOUKHRAT MITALIPOVThe number of mutations in mitochondrial DNA (mtDNA) could vary substantially between different lines of induced pluripotent stem cells (iPSCs), according to a study published last week (April 14) in Cell Stem Cell. The findings suggest the need to screen mtDNA for mutations before iPSCs are used in the clinic.

“People tend to look just at the nuclear genome,” study coauthor Taosheng Huang of Cincinnati Children’s Hospital said in a statement. “But if you want to use iPS cells in a human, you must check for mutations in the mitochondrial genome.”

To investigate the frequency of mitochondrial defects in adult somatic cells, the team measured the number of mtDNA mutations in skin and blood samples donated by a 72-year-old volunteer. When cells were pooled for analysis, the researchers identified relatively low levels of mitochondrial defects. But when they picked individual cells at random, they found much higher levels of mutations, which were masked when analyzed as part of whole tissues due to cell heterogeneity.

“We call it the freckled effect,” Huang explained in the statement. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel