Mother’s Microbes Protect Baby’s Brain

Bacteria in the gut of a pregnant mouse strengthen the blood-brain barrier of her developing fetus.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

V. ALTOUNIAN/SCIENCE TRANSLATIONAL MEDICINEThe brain—the most exalted and enigmatic of organs, which is closed off from the rest of the body by a largely impermeable barrier—could not seem more disconnected from the intestine. Yet, according to a paper published today (November 19) in Science Translational Medicine, it’s thanks to the contents of the gut—specifically, the resident bacteria—that the mouse brain’s impermeable barrier develops properly, both before and after birth.

“It’s absolutely fascinating to think that gut bacteria can control permeability of the blood-brain barrier,” said Caltech microbiologist Sarkis Mazmanian who was not involved in the study. “Many neuroscientists staunchly believe that the blood-brain barrier is an incredibly impermeable membrane to many molecules and . . . would hardly believe that gut bacteria would control such an integral part of our neurobiology.”

The blood-brain barrier (BBB), which shields the organ from blood-borne infections, toxins, and more, is created by steadfast connections called tight junctions between the endothelial cells that line its blood vessels. So effective is the barrier that most proteins and molecules cannot pass through; those that do generally require selective transport via specific receptors.

A similar barrier—made up of epithelial cells and tight ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH