Mouse Immune Cells Destroy Nerves’ Coating, Causing Chronic Pain

A study suggests a way in which acute nerve injury could trigger an autoimmune response that leads to continuing pain in mice.

Written byPatience Asanga
| 3 min read
Illustration of peach-colored microglia among light blue neurons. Both cell types are illustrated with multiple jagged extensions coming out of a spherical cell body.
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

For all they do protecting the body, immune cells can sometimes do more harm than good by setting off problems such as arthritis and allergies. Now, a study published in Science on May 26 uncovers a new mechanism through which immune cells known as microglia heighten sensitivity to pain: by breaking down the outer covering of neurons in the spinal cord that are involved in processing pain information. This action results in the brain interpreting the signals from those nerves as chronic pain.

In the study, researchers based at McGill University in Canada mimicked nerve injury in 8 to 12-week-old mice and then collected what are known as projection neurons, which transmit signals to distant places in the central nervous system, from a region in the spine that processes pain signals. Using a stain that indicates the presence of a type of outer covering known as perineuronal nets (PNNs) on ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • black and white headshot of a woman
    Patience is a Nigeria-based freelance science journalist who writes about the environment, biotechnology, and life sciences. She is also the editor of aebsan, a student-run news outlet operated out of the University of Benin, Nigeria. Her writing has featured in aebsan, ICJS, and theGIST.
    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform