Nailing Regeneration

Researchers identify the signaling program that enables finger and toenail stem cells to direct digit regeneration after amputation.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Humans, like mice, can regenerate fingertips--especially as children.STOCK.XCHNG, JUZARAStem cells at the base of finger and toenails act as coordinating centers to orchestrate communication between the nail, bone, and nerve tissues necessary to promote mouse fingertip regeneration after amputation, according to new research published today (June 13) in Nature. Researchers found that nail stem cells use a signaling pathway important for embryonic limb development to help nerves and new nail and bone cells coordinate signaling during tissue regeneration, providing insight that may enable future stem cell therapies.

“It’s a marvelous study” that described the molecular and cellular processes contributing to mammalian regeneration, said Hans-Georg Simon, a developmental biologist at Northwestern University who did not participate in the study. The findings show that the molecular program governing mammalian regeneration resembles that already seen in amphibians—suggesting a conserved regeneration program that could be harnessed in other tissues, he added.

Unlike some amphibians, which can regrow entire limbs into adulthood, mammals have limited powers of regeneration. But mice and humans can regenerate fingertips to a limited extent—a phenomenon linked to the fact that nails, like hair and skin, are self-renewing tissues. “Very little was known about how nail epithelium cells are regulated,” explained Mayumi Ito, a stem cell biologist at New York University (NYU) who ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH