Natural Selection Kept Neanderthal DNA in Modern Humans

Interbreeding with Neanderthals appears to have reintroduced genetic sequences related to innate immunity that had been lost as humans migrated out of Africa.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, ERICH FERDINANDThe human genome is peppered with the DNA of extinct hominins—Neanderthals and Denisovans—as a result of interbreeding with early Homo sapiens. According to some reports, the Neanderthal and Denisovan DNA retained at specific loci, such as immune system-related genes, likely conferred adaptive advantages against infectious microorganisms. In a study published last month (November 29) in Genome Biology, researchers provide strong evidence that the Neanderthal DNA present at one such locus within the modern human genome is likely the result of positive selection.

The study authors also suggest that this Neanderthal haplotype is not unique to Neanderthals. Rather, interbreeding reintroduced the beneficial genetic variant present in early African humans that had been lost during the out-of-Africa migration and population bottleneck.

“This is an important study contributing to a growing body of work that combines population and functional genomic analyses to learn about archaic alleles,” Sriram Sankararaman, a computational biologist at the University of California, Los Angeles, who was not involved in the work, wrote in an email to The Scientist.

“This study and previous work suggests that acquiring Neanderthal and Denisovan sequences provided access to alleles that were better adapted to the novel selective pressures our ancestors experienced as they migrated Out of Africa into new geographic regions,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel