Neanderthal Genomes Hint at Species’s Population History

DNA analysis gives clues to how the ancient hominin’s population split and how they interacted with modern humans.

Written byAshley Yeager
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

The Vindija cave in Croatia where some of the Neanderthal remains were discovered.M. HAJDINJAKThe genomes of five Neanderthals who lived roughly 39,000 to 47,000 years ago are offering researchers insight into the life history of the ancient hominins. New findings, published yesterday (March 21) in Nature, suggest that those individuals split from an older Neanderthal ancestor from Siberia approximately 150,000 years ago, and that the species experienced was a major population turnover around the end of its history.

Mateja Hajdinjak, an evolutionary biologist at the Max Planck Institute for Evolutionary Anthropology in Germany, and her colleagues sequenced the genomes of the five Neanderthals from bones and teeth found in Belgium, France, Croatia, and the Russian Caucasus. Previously, only four Neanderthal genomes had been sequenced—the new analysis brings the total to nine.

Comparing the new sequences to the genome of another Neanderthal from the Caucasus region revealed that, in addition to splitting from a common ancestor around 150,000 years ago, Neanderthals experienced a major population turnover toward the end of their history, approximately 38,000 years ago. The researchers suggest that this could have been due to extreme cold periods, which led to the extinction of local populations and then recolonization from southern Europe or ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel