Negative Thinking

Researchers uncover the first light-controlled negative-ion channels in algae, and they are fast.

Written byAmanda B. Keener
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GUIDING LIGHTS: Channelrhodopsins from algae such as Guillardia theta (center; false-color image) are endowing optogenetics with novel abilities.DR DAVID HILLThe paper
E.G. Govorunova et al., “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics,” Science, doi:10.1126/science.aaa7484, 2015.

Channel Surfing
Channelrhodopsins (ChRs) from green algae paved the way for optogenetics research in neuroscience and other fields. These membrane ion transporters are light sensitive, and importing them into neurons has given scientists unprecedented control over neuronal activity. The 50 or so known algal ChRs only transport positive ions, however, which trigger action potentials. Only one ChR from an Archean species and engineered algal ChRs can transport anions, which suppress neuronal firing by hyperpolarizing neurons, and neither is as fast or sensitive as the natural algal channels. “[ChRs] enabled fairly efficient activation of neurons, but neural inhibition was limited to much lower-efficiency tools,” says molecular biologist John Spudich of the University of Texas Medical School at Houston.

An Alternative Source
In their search for ChR diversity, Spudich and his colleagues looked to another type of alga called a cryptophyte. They examined the genome of Guillardia theta and cloned three genes that resembled those for known ChRs. After expressing two of the genes in human embryonic kidney cells, “the first thing we saw was an unusually large current,” says Spudich.

The Natural
The researchers found that these channels were natural anion transporters, and when expressed in rat neurons, they are 10,000 times more sensitive than engineered anion channels. “You have to search in nature to find these wonderful tools,” says Wayne State University’s Zhuo-Hua Pan, who is starting to use G. theta’s channels in experiments.

A Brighter Future
Spudich is not stopping at G. theta. He plans to look for more anion channels that will expand the utility of optogenetics. “There are many cryptophytes out there.”

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies