Negative Thinking

Researchers uncover the first light-controlled negative-ion channels in algae, and they are fast.

Written byAmanda B. Keener
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

GUIDING LIGHTS: Channelrhodopsins from algae such as Guillardia theta (center; false-color image) are endowing optogenetics with novel abilities.DR DAVID HILLThe paper
E.G. Govorunova et al., “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics,” Science, doi:10.1126/science.aaa7484, 2015.

Channel Surfing
Channelrhodopsins (ChRs) from green algae paved the way for optogenetics research in neuroscience and other fields. These membrane ion transporters are light sensitive, and importing them into neurons has given scientists unprecedented control over neuronal activity. The 50 or so known algal ChRs only transport positive ions, however, which trigger action potentials. Only one ChR from an Archean species and engineered algal ChRs can transport anions, which suppress neuronal firing by hyperpolarizing neurons, and neither is as fast or sensitive as the natural algal channels. “[ChRs] enabled fairly efficient activation of neurons, but neural inhibition was limited to much lower-efficiency tools,” says molecular biologist John Spudich of the University of Texas Medical School at Houston.

An Alternative Source
In their search for ChR diversity, Spudich and his colleagues looked to another type of alga called a cryptophyte. They examined the genome of Guillardia theta and cloned three genes that resembled those for known ChRs. After expressing two of the genes in human embryonic kidney cells, “the first thing we saw was an unusually large current,” says Spudich.

The Natural
The researchers found that these channels were natural anion transporters, and when expressed in rat neurons, they are 10,000 times more sensitive than engineered anion channels. “You have to search in nature to find these wonderful tools,” says Wayne State University’s Zhuo-Hua Pan, who is starting to use G. theta’s channels in experiments.

A Brighter Future
Spudich is not stopping at G. theta. He plans to look for more anion channels that will expand the utility of optogenetics. “There are many cryptophytes out there.”

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel