Neonatal Gut Bacteria Might Promote Asthma

Byproducts of gut microbes in some 1-month–old babies trigger inflammation that is linked to later asthma development, researchers find.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, YVES MERCKXAbnormal gut microbiota communities present in some 1-month-old children promote inflammation that results in an almost threefold increased risk of developing allergies by age 2, according to a study published today (September 12) in Nature Medicine. More of these kids—who had lower levels of four commensal gut bacteria groups and higher relative levels of two types of fungi—developed signs of asthma by age 4. Further experiments implicated gut microbiota-associated metabolites in stimulating immune cell dysfunction that leads to an increased risk for developing allergies and asthma.

“While some of this information has been seen in animal models, this is really one of the first and best human studies that fills in many of the gaps of how you get from microbiota problems to immune dysfunction to non-communicable diseases like asthma,” said Rodney Dietert, professor of immunotoxicology at Cornell University in Ithaca, New York, who was not involved in the work.

“This is a well done study [providing a strong correlation] between the early microbiome, both bacterial and fungal, and T cell development,” said microbiologist Brett Finlay of the University of British Columbia, in Canada, who was part of a 2015 study that linked gut bacteria to asthma risk but was not involved in the current study. “It re-emphasizes the importance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH