Neonatal Gut Bacteria Might Promote Asthma

Byproducts of gut microbes in some 1-month–old babies trigger inflammation that is linked to later asthma development, researchers find.

Written byAnna Azvolinsky
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, YVES MERCKXAbnormal gut microbiota communities present in some 1-month-old children promote inflammation that results in an almost threefold increased risk of developing allergies by age 2, according to a study published today (September 12) in Nature Medicine. More of these kids—who had lower levels of four commensal gut bacteria groups and higher relative levels of two types of fungi—developed signs of asthma by age 4. Further experiments implicated gut microbiota-associated metabolites in stimulating immune cell dysfunction that leads to an increased risk for developing allergies and asthma.

“While some of this information has been seen in animal models, this is really one of the first and best human studies that fills in many of the gaps of how you get from microbiota problems to immune dysfunction to non-communicable diseases like asthma,” said Rodney Dietert, professor of immunotoxicology at Cornell University in Ithaca, New York, who was not involved in the work.

“This is a well done study [providing a strong correlation] between the early microbiome, both bacterial and fungal, and T cell development,” said microbiologist Brett Finlay of the University of British Columbia, in Canada, who was part of a 2015 study that linked gut bacteria to asthma risk but was not involved in the current study. “It re-emphasizes the importance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies