Neuroaesthetics

Researchers unravel the biology of beauty and art.

Written byAnjan Chatterjee
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

Changes in artistic style as a result of brain damage or dementia make the case that art can serve as a window into the workings of the human brain.© EMMANUEL DUNAND/AFP/GETTY IMAGESWillem de Kooning, the famous Dutch-American abstract expressionist painter, continued to paint for several years after developing Alzheimer’s disease. But his paintings were different somehow, more deeply expressing his abstract style, according to some art critics. De Kooning’s change in style explicitly makes the case that art can serve as a window into the workings of the human brain, that when the brain changes, so too do artistic expression and perception.

But what in the brain triggers aesthetic experiences? And how does knowledge of basic brain mechanisms inform our understanding of these experiences? These questions are at the heart of an emerging discipline dedicated to exploring the neural processes underlying our appreciation and production of beautiful objects and artwork, experiences that include perception, interpretation, emotion, and action. This new field represents a convergence of neuroscience and empirical aesthetics—the study of aesthetics rooted in observation—and is dubbed neuroaesthetics, a term coined in the 1990s by vision neuroscientist Semir Zeki of University College London.

Neuroaesthetics is both descriptive and experimental, with qualitative observations and quantitative tests of hypotheses, aimed at advancing our understanding of how humans process beauty and art. While the field is still young, interest is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform