Neurons from Glia In Vivo

Scientists present new recipes for directly converting glial cells to neurons in mouse brains.

kerry grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIPEDIA, BRUNO PASCALAdult human brains have a very limited ability to produce new neurons, so scientists have been pursuing ways to convert other types of brain cells into these coveted cell types. Several presentations at this week’s Society for Neuroscience (SfN) meeting held in Chicago demonstrated that it’s possible to reprogram glia—non-neuronal cells known for supporting their neuron neighbors—into neurons within the brains of mice.

Sophie Peron of Johannes Gutenberg University in Germany took the genes for two transcription factors, Sox 2 and Ascl1, and overexpressed them in the cortices of mice. She found that 15 percent of the mouse glia cells turned into neurons.

The features of these new neurons are still to be worked out, Peron said. “That’s the next step. Now that we have a system to get these cells converted we are currently studying their connectivity, functionality, and precise characteristics,” she told The Scientist.

Peron said any potential therapy using reprogrammed cells would have to be able to produce specific neural subtypes, which may require additional steps to guide the cells in the right direction.

Other groups are working to convert reactive astrocytes—a form of glial ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio