New and Old Techniques in Modern Neuroscience

Imaging and manipulating the brain has come a long way from electrodes and the patch clamp, though such traditional tools remain essential.

Written byAlison F. Takemura
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

TOP ROW, L TO R: DAVID PRINCE/STANFORD UNIVERSITY; MARK MILLER/FLICKR; J NEUROSCI, 8:4007-26, 1988, WWW.JNEUROSCI.ORG/CONTENT/8/11/4007.LONG; DAVID PRINCE/STANFORD UNIVERSITY. BOTTOM ROW, L TO R: ED BOYDEN, FEI CHEN, PAUL TILLBERG/MIT; J NEUROSCI, 8:4007-26, 1988, WWW.JNEUROSCI.ORG/CONTENT/8/11/4007.LONG; COURTESY OF GYÖRGY BUZSÁKI/NEW YORK UNIVERSITY

In the mid-1980s, György Buzsáki was trying to get inside rats’ heads. Working at the University of California, San Diego, he would anesthetize each animal with ether and hypothermia, cut through its scalp, and drill holes in its skull. Carefully, he’d screw 16 gold-plated stainless steel electrodes into the rat’s brain. When he was done with the surgery, these tiny pieces of metal—just 0.5 mm in diameter—allowed him to measure voltage changes from individual neurons deep in the brain’s folds, all while the rodent was awake and moving around. He could listen to the cells fire action potentials as the animal explored its environment, learning and remembering what it encountered (J Neurosci, 8:4007-26, 1988).

In those days, recording from two cells simultaneously was the norm. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems