New Report Counters Claims on the Origin of Gastric Cancer

Several studies have supported the idea that “chief” cells in the stomach revert to stem cells and lead to cancer, but new results do not observe such dedifferentiation.

Written byDiana Kwon
| 4 min read
chief cell stomach gastric gland cancer dedifferentiation

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: WIKIMEDIA, OPENSTAX COLLEGE

Chief cells lie at the base of the stomach’s gastric glands, and in healthy individuals they are responsible for secreting enzymes required for digestion. Scientists have proposed that, in the face of injury or genetic mutations, these cells revert back to stem cells—or dedifferentiate—and give rise to abnormal changes in tissue called metaplasia, a precancerous state.

This idea emerged more than a decade ago from the observation of a specific type of metaplasia in stomach tissue called spasmolytic polypeptide-expressing metaplasia (SPEM), which appeared to originate from chief cells. Over the years, the body of evidence supporting this hypothesis has grown. But some scientists still question whether chief cells truly give rise to the precursors of cancer.

Yoku Hayakawa, a professor of gastroenterology at the University of Tokyo in Japan, is one of the skeptics. He says there have been technical limitations with the previous work, such ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies