New Target for Myelin Repair

Researchers identify a receptor that causes the degeneration of myelin coating around nerve cells, pointing to a potential new therapy for multiple sclerosis patients.

Written byTia Ghose
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Myelinated neuronELECTRON MICROSCOPY FACILITY, TRINITY COLLEGE

Blocking a death receptor causes damaged myelin, the protective coating surrounding nerve cells, to repair itself, according to a study published Sunday (July 3) in Nature Medicine. The finding suggests that drugs targeting the receptor could help treat multiple sclerosis by reversing the myelin damage characteristic of the disease.

“Showing remyelination, as they do in vivo and in vitro, is a pretty cool result,” said Richard Ransohoff, a Cleveland Clinic neuroscientist who was not involved in the work. The new receptor is a novel first step in potentially repairing damaged nerves of multiple sclerosis patients, he said.

Current multiple sclerosis drugs slow the disease’s progression by quieting the inflammatory response of the immune system, which attacks the myelin surrounding nerve cells and kills oligodendrocytes, brain ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH