© ANDREIUC88/SHUTTERSTOCK.COMIn 1953, cell biologist George Palade used the recently developed technique of electron microscopy to examine the surface of the endothelial cells that form blood vessels. He saw in these mammalian cells that the plasma membrane, which forms the outer barrier of all cell types, was riddled with invaginations.1 The appearance of these folded structures was remarkable: uniformly flask-shape, they self-associated to form intricate, interconnected arrays.
Two years later, Japanese electron microscopist Eichi Yamada coined the term “caveolae,” from the Latin for “little caves,” to describe these invaginations. Caveolae have since turned up in several cell types, accounting for nearly half of all the plasma membrane surface of fat cells as well as endothelial cells. Yet more than half a century after Palade’s discovery, a complete understanding of the cellular function of caveolae remains frustratingly elusive.
One thing that is clear is that genetic data show caveolae to be important for the normal function of blood vessels, muscle, and fat tissue. But how, in precise molecular terms, caveolae contribute to the health of these tissues is still open to debate.
Several models to explain exactly what caveolae are doing have been ...