New Technologies Shed Light on Caveolae

The functions of the cellular invaginations identified more than half a century ago are now beginning to be understood in detail.

| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

© ANDREIUC88/SHUTTERSTOCK.COMIn 1953, cell biologist George Palade used the recently developed technique of electron microscopy to examine the surface of the endothelial cells that form blood vessels. He saw in these mammalian cells that the plasma membrane, which forms the outer barrier of all cell types, was riddled with invaginations.1 The appearance of these folded structures was remarkable: uniformly flask-shape, they self-associated to form intricate, interconnected arrays.

Two years later, Japanese electron microscopist Eichi Yamada coined the term “caveolae,” from the Latin for “little caves,” to describe these invaginations. Caveolae have since turned up in several cell types, accounting for nearly half of all the plasma membrane surface of fat cells as well as endothelial cells. Yet more than half a century after Palade’s discovery, a complete understanding of the cellular function of caveolae remains frustratingly elusive.

One thing that is clear is that genetic data show caveolae to be important for the normal function of blood vessels, muscle, and fat tissue. But how, in precise molecular terms, caveolae contribute to the health of these tissues is still open to debate.

Several models to explain exactly what caveolae are doing have been ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ben Nichols

    This person does not yet have a bio.

Published In

June 2018

Microbial Treasure

Newly discovered archaea reveal bizarre biology

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo