New Way to Make Embryonic Stem Cells

A breakthrough in somatic cell nuclear transfer opens the possibility of producing human embryonic stem cells with a patient’s own genes.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA COMMONS

The first pluripotent human embryonic stem cells (hESCs) have been generated from somatic cell nuclear transfer, according to a study published today (October 5) in Nature. The findings validate this controversial method, and may one day allow therapeutic stem cells to be created from a patient’s own genetic material.

“The advance here is the proof that somatic cell nuclear transfer can work [in human cells] and can fully reset the donor cell genome to a pluripotent state,” said Harvard Medical School’s George Daley, who was not affiliated with the study.

Somatic cell nuclear transfer typically involves the transfer of genomic information from a somatic cell into an unfertilized egg cell whose nucleus has been removed. The fusion ultimately gives rise to a microscopic embryo, from ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer