Newly Discovered Emergency Responders to Liver Damage

Immune cells called macrophages from the peritoneal cavity of mice migrate to injured livers and aid in repair.

Written byAshley P. Taylor
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

TO THE RESCUE: Upon liver injury, GATA6+ peritoneal macrophages sense ATP released from the wound and migrate toward it (A). At the injury site, macrophage-liver interaction is mediated by binding of macrophages’ CD44 to the carbohydrate hyaluronan exposed on the injured tissue (B). The macrophages degrade the nuclei of the dead hepatocytes and a layer of released DNA forms a cover across the wound (C). © JULIA MOORE/MOOREILLUSTRATIONS.COM

The paper
J. Wang, P. Kubes, “A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair,” Cell, 165:668-78, 2016.

The immune system is best known for fighting infections and targeting anything it senses as foreign. But it also serves a less-appreciated, but crucial, duty: swooping in when the body’s own cells are injured or dying.

University of Calgary immunologist Paul Kubes has been working toward understanding this lesser-known role of immune cell function. Working in mice, he and postdoc Jing Wang burned a tiny spot on the surface of the liver and used fluorescence microscopy to observe what happened next. Many of the expected cells, such as platelets and neutrophils, showed up at the wound, but there was also ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies