Scientists Uncover Major Pathway Cells Use to Mend Leaky Lysosomes

Damaged lysosomes are repaired by a lipid-based signaling pathway dubbed PITT that could be targeted to treat neurodegenerative disease, its discoverers say.

Written byHolly Barker, PhD
| 3 min read
a false color transmission electron microscope image of a neuronal cell body, with lysosomes colored dark green
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Lysosomes are tiny sacs of digestive enzymes that declutter cells by breaking down waste. But they can also be troublesome: When their outer surface is damaged, their destructive proteins begin to spill into the cytoplasm and harm the cell. Indeed, the frequency of this leakiness increases as a person ages and likely plays a role in aging-associated diseases such as neurodegenerative conditions. Now, a study published September 7 in Nature uncovers a previously unknown pathway that cells use to repair leaky lysosomes, which may have implications for treating these diseases.

It’s a “very complete and well-designed” study, and the first to link lipid transport to a nonmetabolic biological process, says Marja Jäättelä, a professor of cell death and metabolism at the Danish Cancer Society Research Centre, who was not involved in the work.

Research had already established one way that cells repair leaky lysosomes. Previously, a collection of proteins known ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Headshot of Holly Barker

    Holly Barker is a freelance writer based in London. She has a PhD in clinical neuroscience from King’s College London and a degree in biochemistry from the University of Manchester. She has previously written for Discover and Spectrum News.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo