Oligonucleotide Therapeutics Near Approval

Successful late-stage clinical trials could mark the maturation of a new drug development platform, but the path to commercialization is not without hurdles.

Written byCatherine Offord
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ISTOCK.COM/KTSIMAGECold Spring Harbor Laboratory molecular geneticist Adrian Krainer was at a National Institutes of Health workshop in 1999 when he first learned about the crippling neurodegenerative disease spinal muscular atrophy (SMA)—the leading genetic cause of death in infants. The disease has no treatment, and more than 90 percent of infants born with SMA die before the age of two. At the workshop, Krainer recalls, researchers presented their findings on two genes associated with the disease, SMN1 and a duplicate gene, SMN2, both coding for survival motor neuron (SMN) protein, an essential component in the production of spinal motor neurons.

Despite the apparent similarity of the genes, SMA researcher Christian Lorson, then of Tufts University School of Medicine in Boston, and colleagues had found that a single nucleotide difference was causing the RNA transcripts of each gene to be processed differently, Krainer says. While SMN1—which is usually absent or defective in SMA sufferers—produces functional protein, SMN2 contains a mutation that causes exon 7 to be regularly left out of the transcript during splicing. The resulting messenger RNA (mRNA) is unstable and quickly degraded, resulting in low levels of SMN.

The research piqued Krainer’s interest. He had been studying general mechanisms of splicing and exon skipping and saw the potential to restore proper splicing of SMN2 transcripts as a way to compensate for SMN1 loss in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH