One Way to Fix Reproducibility Problems: Train Scientists Better

Leonard Freedman, president of the Global Biological Standards Institute, discusses the causes of irreproducible science and his latest effort to spread best practices.

katya katarina zimmer
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Leonard Freedman, GBSI JUDY LICHT, GSBI Leonard Freedman is on a mission to make science better. He’s one of the scientists who helped calculate a now-notorious statistic about waste in preclinical research—namely, that $28 billion in research funds is spent each year on irreproducible research, due to issues with biological reagents, laboratory errors, ill-planned experiments.

To help solve the “reproducibility crisis,” Freedman’s latest ambition is to train students in the fundamental principles of experimental design. The organization he leads, the Global Biological Standards Institute, recently received a $2.34 million grant to launch the project, entitled Producing Reproducible Experiments by Promoting Reverse Experimental Design. He spoke with The Scientist about where things are going wrong in experimental setups, and how his project will help solve the problem.

The Scientist: Where in the scientific process are things going wrong when it comes to irreproducibility?

Leonard Freedman: It’s multifaceted, there isn’t going to be one easy fix. . . . The first two are biological reagents and reference materials. . . . And then we think the [next] biggest driver is study design, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo