Opinion: Standards Needed

The success of genome sequencing hinges on technology standardization and coordinated efforts among scientists, bioinformaticians, and physicians.

Written byGary Magnant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, GEORGE GASTINTwo recent initiatives promise to deliver much-needed standards for the genomics community. Last year, the National Institute of Standards and Technology launched Genome in a Bottle, a public-private consortium to develop reference materials for human genome sequencing. And just recently, scientists from more than 70 institutions announced the Global Alliance, a group calling for data-sharing and open technology standards for genome analysis.

The timing of these new efforts is no coincidence. As genome sequencing makes its steady march toward mainstream utility in the clinic, scientists, bioinformaticians, and physicians alike are realizing the need for more stringent standards that will enable straightforward comparisons of data from one lab to the next. I commend both of these new groups for the critical guidelines they aim to establish.

Now that we as an industry are having these conversations, it is worth remembering that genome sequencing involves more than a sample, a sequencer, and a variant caller. We can standardize the quality of the DNA sample we start with as well as the analytical tools we use, but that still leaves a host of opportunities to introduce variability in the pipeline ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery