Parasitologist, Reprogrammed: A Profile of David Roos

After discovering a novel organelle found in protozoan parasites, the University of Pennsylvania’s Roos created a widely used eukaryotic pathogen database.

Written byAnna Azvolinsky
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

DAVID ROOS
E. Otis Kendall Professor of Biology, University of Pennsylvania
Director, Penn Genomics Institute, 2001 to 2006
COURTESY OF DAVID ROOS

David Roos had been studying nucleated parasites such as Toxoplasma and Plasmodium (malaria) for several years when he decided to ask a simple question: How do antibiotics such as clindamycin work in treating both malaria and toxoplasmosis? The answer turned out to be a discovery that simultaneously solved three biological mysteries, rewrote biology textbooks, and helped to launch the field of evolutionary cell biology.

Clindamycin and related drugs kill bacteria by inhibiting the ability of bacterial ribosomes to synthesize proteins, but don’t affect ribosomes in eukaryotic cells, including those of humans. Yet both malaria and toxoplasmosis are caused by eukaryotic unicellular parasites, which clindamycin also treats. In 1996, Roos, a professor of biology at the University of Pennsylvania, and then-graduate student Maria Fichera tested three ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies