Pluripotency Bots

A tour of efforts to automate the production and differentiation of induced pluripotent stem cells

Written byKate Yandell
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ADAPTED FROM © ISTOCKPHOTO.COM/MONSTITJInduced pluripotent stem cells (iPSCs)—adult cells reprogrammed to act like they had never differentiated—have been game-changers in the life sciences. They have already emerged as invaluable tools for studying the mechanisms of genetic disease and for screening drugs. And scientists hope that iPSCs will yield therapies to treat conditions from spinal injury to heart disease.

But reprogramming adult cells into iPSCs and then expanding and differentiating the newly pluripotent cells into cell types of interest can be a tedious and error-prone task. Whether it’s pipetting specific volumes of solution or sticking to strict incubation times, the human touch invariably contributes imprecision.

Feeding, reprogramming, and picking iPSC colonies is “exceptionally labor-intensive,” says Evan Snyder, a stem cell biologist and physician at Sanford Burnham Prebys Medical Discovery Institute and the University of California, San Diego. “You really have lots of people sitting under a hood using their eye to determine the best reprogrammed colonies, and then passaging them, expanding them, characterizing them.”

A well-validated and designed automated method should produce consistent, high-quality cells, but a poorly done automation process could introduce widespread ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery