Probing Down Syndrome with Mini Brains

Researchers create cerebral organoids using induced pluripotent stem cells from patient skin cells and characterize protein-expression changes linked to cognitive impairment.

Written byBob Grant
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, NATIONAL HUMAN GENOME RESEARCH INSTITUTEInduced pluripotent stem cells (iPSCs) grown from the skin cells of a person with Down syndrome are helping researchers grow cerebral organoids and track protein expression in an effort to better understand the disorder on a cellular and molecular level. University of Colorado Boulder postdoc Tristan McClure-Begley and his colleagues sought to better understand the neurological and developmental changes that occur in people with a third copy of chromosome 21, the unifying pathological feature of Down syndrome. “That third copy of chromosome 21 influences all aspects of embryonic development, including critical steps during brain development,” McClure-Begley said in a statement. “But we’ve had trouble identifying exactly why the extra chromosome has such widespread effects, partly because we’ve lacked good human tissue models of Down syndrome.”

So McClure-Begley and his colleagues took a fibroblast from a single Down syndrome patient, coaxed it into becoming two iPSC lines, and then reprogrammed those cells into neural progenitor cells that self-organized into cerebral tissue in vitro. “So we get a window into what an individual central nervous system development looked like from a cellular and molecular level,” he said during a Monday (October 19) press conference at the Society for Neuroscience (SfN) annual meeting held in Chicago.

The researchers found that protein expression did not follow a simple 1:1 ratio with the extra genes on the triplicate chromosome 21 leading to a proportional increase in proteins expressed. “Rather, there’s a complex change, where some proteins are upregulated, some proteins are downregulated—all reflecting a general ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • From 2017 to 2022, Bob Grant was Editor in Chief of The Scientist, where he started in 2007 as a Staff Writer. Before joining the team, he worked as a reporter at Audubon and earned a master’s degree in science journalism from New York University. In his previous life, he pursued a career in science, getting a bachelor’s degree in wildlife biology from Montana State University and a master’s degree in marine biology from the College of Charleston in South Carolina. Bob edited Reading Frames and other sections of the magazine.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel