Programming Pancreatic Cells

Researchers reprogram human skin cells to make insulin-producing pancreatic cells that can prevent diabetes in mice.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Stained human pancreatic cells, successfully transplanted into a mouseSAIYONG ZHUA team at the University of California, San Francisco (UCSF), has successfully created functional pancreatic cells from human skin cells that, when transplanted into immunodeficient mice, prevented the development of diabetes. The results were published yesterday (January 6) in Nature Communications.

“This study represents the first successful creation of human insulin-producing pancreatic beta cells using a direct cellular reprogramming method,” study coauthor Saiyong Zhu of the UCSF Gladstone Institute of Cardiovascular Disease said in a press release.

Currently, one of the most widely used approaches to cell reprogramming involves reverting cells to pluripotent stem cells, which can then be used to generate any cell type found in the body. But the method used in this study directly reprograms cells into progenitors—cells that can produce only a limited number of organ-specific cell types.

“This new cellular reprogramming and expansion paradigm is more sustainable and scalable than previous methods,” said coauthor Sheng Ding of the Roddenberry Center for Stem Cell Biology and Medicine in the press release. “Using ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo