Researchers Develop New Method for Sexing Sperm

Scientists found they could sort mouse sperm prior to IVF by treating semen with a drug that selectively slows down X-bearing cells.

Written byKatarina Zimmer
| 4 min read
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

The mammalian X chromosome has many genes that the Y does not—a feature that has special implications for sperm, and also for scientists.

The mouse X chromosome carries two protein receptors that when activated by a chemical make X-bearing sperm slower and easy to separate from Y-bearing sperm, a team of Japanese researchers has found. By sorting the gametes using this method and allowing them to fertilize oocytes in vitro, the scientists could selectively generate mouse litters with majority-female or majority-male pups, they report today (August 13) in PLOS Biology.

“It’s definitely an excellent piece of work,” remarks James Knight, a reproductive biologist at Virginia Tech who wasn’t involved in the study. “The whole methodology that they’re describing, given the accuracy of separating X- and Y-bearing sperm, has tremendous applicability to several species.”

Reproductive biologist Masayuki Shimada of Hiroshima University and his colleagues initially began the research to better understand ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems