Researchers Find Flaws in High-Profile Study on Trees and Climate

Four independent groups say the work overestimates the carbon-absorbing benefits of global forest restoration, but the authors insist their original estimates are accurate.

Written byKatarina Zimmer
| 5 min read
forest climate change trees ecosystem carbon storage

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: A study suggested that filling in treeless spaces with forest could store considerable amounts of carbon—and mitigate climate change.
© ISTOCK.COM, ET1972

In July, a high-profile study in Science estimated that Earth has space for another 0.9 billion hectares’ worth of trees—an area the size of the continental US. Simply allowing forests to recover in those areas would suck more than 200 gigatons of carbon out of the atmosphere, a significant chunk of what humans have emitted in the last century. “Global tree restoration is our most effective climate change solution to date,” the authors claimed in the paper.

Now, four independent groups take issue with the study’s methodology. Although reforestation remains a powerful tool in tackling climate change, the authors overstated the number of trees that could feasibly grow under Earth’s current climate, and how much carbon they could pull out of the air, according to the critiques published ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • katya katarina zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field of science and wanted to write about all of them. Following an internship with The Scientist in 2017, she’s been happily freelancing for a number of publications, covering everything from climate change to oncology. Katarina is a news correspondent for The Scientist and contributes occasional features to the magazine. Find her on Twitter @katarinazimmer and read her work on her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH