Researchers Turn to Implantable Robots to Regenerate Tissue

The devices, which could one day treat children with esophageal atresia and short bowel, were recently tested in pigs.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

PAGING DR. ROBOT: The esophagus-stretching device is connected by a cable to a battery-powered, wifi-capable controller.KARL PRICEParents from all over the world bring their babies and young toddlers to Boston Children’s Hospital for an operation that surgeon Russell Jennings wishes he didn’t have to perform. These children have been born with a disconnected esophagus, the upper section of which ends in a blind pouch a few centimeters from a lower portion that protrudes from the top of the stomach. The condition, called long-gap esophageal atresia, affects around one in 2,500 newborns, and is fatal if left untreated. But the procedure that Jennings and his colleagues currently perform to fix it, called the Foker process, takes its own toll.

To repair the digestive tract, Jennings makes an incision in the child’s back and stitches a few tiny sutures into the end of each of the two sections of esophagus. Then, he ties the sutures onto button-like wheels on the child’s back. The operation has to be conducted under anesthesia, and once it’s finished, depending on the particulars of the child’s condition, he or she may be kept sedated, on a ventilator, and fed intravenously for a few weeks to ensure the sutures stay in place. Every few days, Jennings or another doctor tightens the buttons a bit more, tugging at the sutures, until both sections of the esophagus grow long enough that they can reconnect to form a continuous tube.

Jennings estimates he’s performed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.

Published In

May 2018

Rare Diseases

The realities of studying uncommon conditions

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD
The Scientist Placeholder Image

Streamlining Microbial Quality Control Testing

MicroQuant™ by ATCC logo

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies

waters-logo

How Alderley Analytical are Delivering eXtreme Robustness in Bioanalysis