Researchers Uncover Previously Unknown Immune Cell Subtypes

Using single-cell RNA sequencing, scientists characterize new populations of dendritic cells and monocytes.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

DISTINCTLY DIFFERENT: A newly discovered type of dendritic cell (left) exhibits notable differences from a standard plasmacytoid dendritic cell (right).3-D RECONSTRUCTION BY JAMES FLETCHER, IMAGE COURTESY OF KATHRYN WHITE, NEWCASTLE UNIVERSITY

The paper A.-C. Villani et al., “Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors,” Science, 356:eaah4573, 2017. Hiding, not seeking Dendritic cells and monocytes, essential pathogen-sensing immune watchdogs, fall into subtypes based on factors such as cell surface markers. But according to genomicist and immunologist Alexandra-Chloé Villani of the Broad Institute of MIT and Harvard, scientists only “use a handful of markers to define their favorite cell type,” potentially overlooking subpopulations with similar features but different functions. New cell types To redefine traditional cell subtypes, Villani and her colleagues isolated human dendritic cells and monocytes, sequenced the transcriptomes of individual cells, then grouped cells based on similar expression patterns. They then identified cell-surface markers that were highly and specifically expressed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Aggie Mika

    This person does not yet have a bio.

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo