Resolving Discrepancies in Mouse and Human Autoimmunity Studies

By editing primary T cells with CRISPR, researchers begin to settle a long-standing debate about a common autoimmunity risk variant.

Written byNiki Spahich, PhD
| 4 min read
Editing genome stock photo
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share
White blocks, each with a DNA icon, in a row. One DNA icon is red surrounded by a green block with a checkmark and a red block with an X.

To understand the inappropriate immune responses that lead to autoimmune disorders, scientists must untangle a complex web of environmental and genetic risk factors. One common autoimmunity risk variant—a mutation that switches an arginine to a tryptophan (R620W) in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) geneassociates with numerous autoimmune disorders and nearly doubles a person’s risk of type 1 diabetes, systemic lupus erythematosus, and rheumatoid arthritis.1 PTPN22 is highly expressed in lymphocytes where it influences T cell receptor (TCR) signaling and T cell activation. While PTPN22 R620W is well known, it is not well understood, leading to opposing opinions about the variant’s consequences.2

When a T cell receptor (TCR) binds its target antigen, a signaling cascade initiates within the cell, driving its proliferation and activation. PTPN22 negatively regulates this response by dephosphorylating key proteins in the pathway.3 The R620W mutation keeps PTPN22 from making it to the membrane where the proteins it interacts with reside.4 To determine the broader consequences of this mislocalization, researchers genetically engineered this variant into mice and found an increase in T cell signaling and activation. In contrast, R620W variant T cells taken from humans had the opposite response—their T cells were less activated.2

Continue reading below...

Like this story? Sign up for FREE Genetics updates:

Latest science news storiesTopic-tailored resources and eventsCustomized newsletter content
Subscribe

New data presented in eLife from David Rawlings, a professor of pediatrics at the University of Washington and the director of the Center for Immunity and Immunotherapies at Seattle Children’s Research Institute, help make sense of these discrepancies.5 Warren Anderson, a postdoctoral researcher in Rawlings’s laboratory, spearheaded an ambitious project to study the R620W variant using a new gene editing approach. Anderson and Rawlings suspected that the human and mouse data conflicted because the researchers performing the human studies used T cells from patients with existing autoimmune diseases who had been exposed to activating antigens throughout their lives. Over time, this overstimulation leads to exhausted T cells with decreased activation. By studying primary T cells that are naïve to antigen exposure, Rawlings’s team revealed the risk variant’s function in the absence of overstimulation.

It brings together the mouse and human data in a way that we hadn't been able to do before.
– Robert Salmond, Leeds Institute of Medical Research at St James's

Using CRISPR gene editing, the researchers constructed a naïve primary T cell line with the R620W mutation, a control line with a non-risk mutation, and a complete PTPN22 knockout. Rawlings and his team found that both cell lines had increased TCR signaling when stimulated, similar to observations from previous mouse studies. To their knockout cell population, the researchers next added TCRs that reacted to a human self antigen targeted in type 1 diabetes patients. “That is one of the diseases where this risk variant is…increasing the risk,” said Rawlings. “We wanted to use a [self-reactive] TCR that sees the self antigen in a physiologic setting.”

Using lentiviral delivery, Rawlings and his team loaded the T cells with low- and high-avidity receptors—TCRs that would either weakly or strongly bind the self antigen. Previously, researchers found that PTPN22 repressed T cell activation by antigens that weakly bound to the TCR.6 Rawlings thought that the R620W mutation might enhance autoimmunity by activating T cells with low-avidity TCRs that recognized self antigens. He was correct—the PTPN22 mutant T cells harboring low-avidity TCRs had overblown responses to their antigen. “Expression of this [variant] seems to be rendering the T cells more responsive to the types of antigens that under normal circumstances you'd want to ignore,” said Robert Salmond, an associate professor at Leeds Institute of Medical Research at St. James's at the University of Leeds, who was not involved in this study.

Thanks to their complex CRISPR editing strategy in primary human T cells, Rawlings’s team obtained results that supported the validity of the R620W variant data from previous mouse studies. “It brings together the mouse and human data in a way that we hadn't been able to do before,” said Salmond. By getting to the root of the variant’s effects, Rawlings thinks that these results could lead to better treatments for autoimmune disorders. “There are groups that have been trying to make inhibitors of [PTPN22] and proposing to use those as therapeutics. Our data would say that's not a good idea,” said Rawlings. “It wouldn't be a good strategy to treat patients with an inhibitor of a negative regulator.”

  1. Tizaoui K, Shin JI, Jeong GH, et al. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (Kaunas). 2022;58(8):1034. doi:10.3390/medicina58081034
  2. Rawlings DJ, Dai X, Buckner JH. The Role of PTPN22 Risk Variant in the Development of Autoimmunity: Finding Common Ground between Mouse and Human. The Journal of Immunology. 2015;194(7):2977-2984. doi:10.4049/jimmunol.1403034
  3. Wu J, Katrekar A, Honigberg LA, et al. Identification of Substrates of Human Protein-tyrosine Phosphatase PTPN22 *. Journal of Biological Chemistry. 2006;281(16):11002-11010. doi:10.1074/jbc.M600498200
  4. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4):337-338. doi:10.1038/ng1323
  5. Anderson W, Barahmand-pour-Whitman F, Linsley PS, Cerosaletti K, Buckner JH, Rawlings DJ. PTPN22 R620W gene editing in T cells enhances low-avidity TCR responses. Malissen B, Taniguchi T, Cope A, Chan AC, eds. eLife. 2023;12:e81577. doi:10.7554/eLife.81577
  6. Salmond RJ, Brownlie RJ, Morrison VL, Zamoyska R. The tyrosine phosphatase PTPN22 discriminates weak self peptides from strong agonist TCR signals. Nat Immunol. 2014;15(9):875-883. doi:10.1038/ni.2958
Research Resources logo

Related Topics

Meet the Author

  • Niki Spahich headshot

    Niki Spahich earned her PhD in genetics and genomics from Duke University, where she studied Haemophilus influenzae membrane proteins that contribute to respiratory infections. She later explored Staphylococcus aureus metabolism during her postdoctoral fellowship in the Department of Microbiology and Immunology at the University of North Carolina at Chapel Hill. Prior to joining The Scientist, Niki taught biology, microbiology, and genetics at various academic institutions. She also developed a passion for science communication in written, visual, and spoken forms, which led her to start Science Riot, a nonprofit dedicated to teaching scientists how to communicate to the public through the lens of comedy. Niki is currently the manager of The Scientist's Creative Services Team.

    View Full Profile
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
An image of a DNA sequencing spectrum with a radial blur filter applied.

A Comprehensive Guide to Next-Generation Sequencing

Integra Logo
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel