Ribosomal DNA Copy Numbers Decrease in Some Cancers

An analysis of human cancer genome projects uncovers a counterintuitive loss of ribosomal gene copies.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human chromosomes stained blue and ribosomal DNA in greenTAMARA POTAPOVA (WITH PERMISSION)Ribosomal DNA (rDNA) is highly repetitive, making it tough for scientists to analyze. But a new study, published today (June 22) in PLOS Genetics, reveals that the genomes of cancer cells in both humans and mice have fewer copies of rDNA genes than their normal counterparts. Yet despite this loss, mice show more ribosomal RNA and protein synthesis.

“This is the first comprehensive, in-depth analysis of ribosomal DNA copy number in human cancers,” says Mikael Linström, a cancer biologist at the Karolinska Institute in Sweden who did not participate in the work. “In all labs that are working with ribosome biogenesis and rDNA genes, the question is always: what’s the role of the mysterious rDNA?”

Coauthor Jennifer Gerton, a yeast biologist at the Stowers Institute for Medical Research in Kansas City, Missouri, says that the inspiration to look at rDNA in cancer genomes came from work in yeast and human cells that has shown highly variable copy numbers in rDNA genes. She was curious to see how that variability fared in the context of cancer.

Gerton and colleagues analyzed whole genome sequencing data ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research