Ribosomal DNA Copy Numbers Decrease in Some Cancers

An analysis of human cancer genome projects uncovers a counterintuitive loss of ribosomal gene copies.

abby olena
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human chromosomes stained blue and ribosomal DNA in greenTAMARA POTAPOVA (WITH PERMISSION)Ribosomal DNA (rDNA) is highly repetitive, making it tough for scientists to analyze. But a new study, published today (June 22) in PLOS Genetics, reveals that the genomes of cancer cells in both humans and mice have fewer copies of rDNA genes than their normal counterparts. Yet despite this loss, mice show more ribosomal RNA and protein synthesis.

“This is the first comprehensive, in-depth analysis of ribosomal DNA copy number in human cancers,” says Mikael Linström, a cancer biologist at the Karolinska Institute in Sweden who did not participate in the work. “In all labs that are working with ribosome biogenesis and rDNA genes, the question is always: what’s the role of the mysterious rDNA?”

Coauthor Jennifer Gerton, a yeast biologist at the Stowers Institute for Medical Research in Kansas City, Missouri, says that the inspiration to look at rDNA in cancer genomes came from work in yeast and human cells that has shown highly variable copy numbers in rDNA genes. She was curious to see how that variability fared in the context of cancer.

Gerton and colleagues analyzed whole genome sequencing data ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit