Ribosomal DNA Copy Numbers Decrease in Some Cancers

An analysis of human cancer genome projects uncovers a counterintuitive loss of ribosomal gene copies.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Human chromosomes stained blue and ribosomal DNA in greenTAMARA POTAPOVA (WITH PERMISSION)Ribosomal DNA (rDNA) is highly repetitive, making it tough for scientists to analyze. But a new study, published today (June 22) in PLOS Genetics, reveals that the genomes of cancer cells in both humans and mice have fewer copies of rDNA genes than their normal counterparts. Yet despite this loss, mice show more ribosomal RNA and protein synthesis.

“This is the first comprehensive, in-depth analysis of ribosomal DNA copy number in human cancers,” says Mikael Linström, a cancer biologist at the Karolinska Institute in Sweden who did not participate in the work. “In all labs that are working with ribosome biogenesis and rDNA genes, the question is always: what’s the role of the mysterious rDNA?”

Coauthor Jennifer Gerton, a yeast biologist at the Stowers Institute for Medical Research in Kansas City, Missouri, says that the inspiration to look at rDNA in cancer genomes came from work in yeast and human cells that has shown highly variable copy numbers in rDNA genes. She was curious to see how that variability fared in the context of cancer.

Gerton and colleagues analyzed whole genome sequencing data ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH