RNA-Seq Reveals Previously Hidden, Genetic Disorder–Causing Mutations

Adding RNA sequencing analysis to genomic sequencing helps scientists uncover mutations likely responsible for genetic disorders they might otherwise miss.

head shot of blond woman wearing glasses
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Independent splice-creating mutations in an intron of the COL6A1 in two patients with collagen VI myopathyBERYL CUMMINGS, HARVARD UNIVERSITYRNA sequencing (RNA-seq) of affected tissue can be used to discover mutations likely responsible for Mendelian disorders, according to researchers from the Broad Institute of MIT and Harvard and their colleagues. A team led by Daniel MacArthur of the Broad Institute used RNA-seq on skeletal muscle biopsies from patients with rare, undiagnosed genetic disorders to uncover novel disease-causing mutations that are not easily identified with DNA sequencing, such as pathogenic splice site variants. The study, published in Science Translational Medicine today (April 19), is the largest-to-date application of transcriptome sequencing to a cohort of patients with undiagnosed diseases to identify previously unknown mutations associated with inherited disorders.

“This is a really great study that demonstrates beautifully the use of RNA sequencing in discovering and charactering relevant human disease mutations,” said Tuuli Lappalainen of the New York Genome Center, who collaborates with some of the coauthors in the Genotype-Tissue Expression (GTEx) Consortium but was not involved in the present study. “This is the first really compelling example of how well this can work.”

“There has been a huge step forward in how quickly we can do DNA sequencing to diagnose rare genetic diseases. But that approach still cannot identify the relevant mutation in about 60 percent of cases,” Jeffrey Barrett of the Wellcome Trust Sanger Institute who was not involved in the work told The Scientist. “This new paper is a really nice ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky

    Anna Azvolinsky is a freelance science writer based in New York City.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo