RNA-Seq Reveals Previously Hidden, Genetic Disorder–Causing Mutations

Adding RNA sequencing analysis to genomic sequencing helps scientists uncover mutations likely responsible for genetic disorders they might otherwise miss.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Independent splice-creating mutations in an intron of the COL6A1 in two patients with collagen VI myopathyBERYL CUMMINGS, HARVARD UNIVERSITYRNA sequencing (RNA-seq) of affected tissue can be used to discover mutations likely responsible for Mendelian disorders, according to researchers from the Broad Institute of MIT and Harvard and their colleagues. A team led by Daniel MacArthur of the Broad Institute used RNA-seq on skeletal muscle biopsies from patients with rare, undiagnosed genetic disorders to uncover novel disease-causing mutations that are not easily identified with DNA sequencing, such as pathogenic splice site variants. The study, published in Science Translational Medicine today (April 19), is the largest-to-date application of transcriptome sequencing to a cohort of patients with undiagnosed diseases to identify previously unknown mutations associated with inherited disorders.

“This is a really great study that demonstrates beautifully the use of RNA sequencing in discovering and charactering relevant human disease mutations,” said Tuuli Lappalainen of the New York Genome Center, who collaborates with some of the coauthors in the Genotype-Tissue Expression (GTEx) Consortium but was not involved in the present study. “This is the first really compelling example of how well this can work.”

“There has been a huge step forward in how quickly we can do DNA sequencing to diagnose rare genetic diseases. But that approach still cannot identify the relevant mutation in about 60 percent of cases,” Jeffrey Barrett of the Wellcome Trust Sanger Institute who was not involved in the work told The Scientist. “This new paper is a really nice ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH