Roadmap to an HIV Vaccine

Researchers track the evolution of HIV in a single patient to understand what drives the production of broadly neutralizing antibodies.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

HIV virions.CDC/MAUREEN METCALFE, TOM HODGEBy investigating an African patient’s HIV infection, researchers have traced the development of an antibody that is effective at neutralizing many strains of HIV, according to a study published today (April 3) in Nature. The researchers—who identified the original HIV variant as well as the broadly neutralizing antibody, and pieced together their evolution over the course of infection—hope that a vaccine mimicking this process could encourage the development of such effective HIV-fighting antibodies.

The new research provides “really in-depth information on how a particular type of broadly neutralizing antibody emerges over the course of a natural HIV infection,” said Leonidas Stamatatos, an immunologist at Seattle Biomedical Research Institute who did not participate in the study.

Broadly neutralizing antibodies—able to block many strains of HIV from binding target cells—are notoriously rare: only about 20 percent of HIV-positive people ever generate such antibodies. One of the most attractive neutralizing targets is the HIV envelope protein (Env) that binds T cells, which is present on every variant of HIV. But Env is covered in sugar molecules that often mimic host structures, making it hard for the immune system to distinguish virus from self. In order to avoid an adverse autoimmune reaction, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series