Roadmap to an HIV Vaccine

Researchers track the evolution of HIV in a single patient to understand what drives the production of broadly neutralizing antibodies.

Written bySabrina Richards
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

HIV virions.CDC/MAUREEN METCALFE, TOM HODGEBy investigating an African patient’s HIV infection, researchers have traced the development of an antibody that is effective at neutralizing many strains of HIV, according to a study published today (April 3) in Nature. The researchers—who identified the original HIV variant as well as the broadly neutralizing antibody, and pieced together their evolution over the course of infection—hope that a vaccine mimicking this process could encourage the development of such effective HIV-fighting antibodies.

The new research provides “really in-depth information on how a particular type of broadly neutralizing antibody emerges over the course of a natural HIV infection,” said Leonidas Stamatatos, an immunologist at Seattle Biomedical Research Institute who did not participate in the study.

Broadly neutralizing antibodies—able to block many strains of HIV from binding target cells—are notoriously rare: only about 20 percent of HIV-positive people ever generate such antibodies. One of the most attractive neutralizing targets is the HIV envelope protein (Env) that binds T cells, which is present on every variant of HIV. But Env is covered in sugar molecules that often mimic host structures, making it hard for the immune system to distinguish virus from self. In order to avoid an adverse autoimmune reaction, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research