“Rogue” Protein Could Contribute to Humans’ High Cancer Rates

A mutant protein called Siglec-XII may promote carcinoma progression in humans, but inactivation of its gene seems to avoid the problem, according to a study.

asher jones
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: A tissue section from a prostate cancer patient who produces Siglec-XII (stained brown), which is much more highly expressed in malignant cells than normal cells.
FASEB BIOADVANCES, DOI:10.1096/FBA.2020-00092, 2020

The paper
S.S. Siddiqui et al., “Human-specific polymorphic pseudogenization of SIGLEC12 protects against advanced cancer progression,” FASEB BioAdvances, 3:69–82, 2021.

Among a group of cell surface proteins known as sialic-acid-binding immunoglobulin-like lectins (Siglecs), CD33-related Siglecs are found mainly on innate immune cells and are involved in cell signaling. One Siglec, however, appears to have “gone rogue” in humans, according to Ajit and Nissi Varki, a husband-and-wife team at the UC San Diego School of Medicine.

Siglec-XII, encoded by the gene SIGLEC12, no longer binds sialic acid and seems to be involved in abnormal cell signaling in humans, the researchers report. The Varkis argue that the protein plays a role in cancer progression and could help explain why humans have much higher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • asher jones

    Asher Jones

    Asher is a former editorial intern at The Scientist. She completed a PhD in entomology from Penn State University, and she was a 2020 AAAS Mass Media Fellow at Voice of America. You can find more of her work here.

Published In

April 2021

Advancing Against Metastasis

Cancer cells can spread early and lie dormant for years

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio