Same Gene, Different Functions

Proteins encoded by the same gene can play very different roles in the cell, scientists show.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

CD46, a type I membrane protein, has at least 14 different isoforms.WIKIMEDIA, EMWThe human genome contains roughly 20,000 protein-coding genes, yet the number of proteins in human cells is thought to be more like 100,000. Researchers from three institutions in North America have now shown that at least some of the diversity of proteins’ functions in the cell may be due to the widely diverging roles of protein isoforms—structurally similar variants produced as a result of slight differences during the translation of a single gene. The findings were published yesterday (February 11) in Cell.

“The exciting discovery was that isoforms coming from the same gene often interacted with different protein partners,” study coauthor Gloria Sheynkman of the Dana-Farber Cancer Institute said in a statement. “This suggests that the isoforms play very different roles within the cell.”

Unlike previous functional studies of isoforms, which have generally focused on one or a handful of genes, this project systematically analyzed the interactions of multiple isoforms from hundreds of genes.

The researchers found that, on average, two related isoforms shared less than 50 percent of interacting proteins; 16 percent of related isoforms shared none at all. These differences in interaction partners were often associated with only tiny alterations in DNA sequence—sometimes just a single base pair.

“From the perspective of all the protein ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo