SARS-CoV-2 Can Live on Plastic and Steel for 2–3 Days

A preprint indicates that coronavirus transmission from surfaces is possible, but does not provide evidence that this has occurred in the COVID-19 pandemic.

Written byKerry Grens
| 2 min read
coronavirus covid-19 sars-cov-2 surfaces plastic steel airborne aerosolized

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: © ISTOCK.COM, 4X-IMAGE

The coronavirus that causes COVID-19, SARS-CoV-2, can survive for several hours in an aerosolized form and for up to three days on plastic and steel surfaces, researchers reported Tuesday (March 10) on medRxiv. While the detection of viable virus means it’s theoretically possible to transmit the disease from contaminated surfaces or from the air—in addition to the typical route of having larger droplets land directly on a new host after an infected person, say, coughs in their proximity—“We’re not by any way saying there is aerosolized transmission of the virus,” coauthor Neeltje van Doremalen of the National Institute of Allergy and Infectious Diseases tells the Associated Press.

The authors applied SARS-CoV-2 and SARS-CoV, the virus that caused the SARS outbreak of 2003, to plastic, stainless steel, copper, and cardboard in the lab and created aerosolized viruses using a nebulizer.

They found viable SARS-CoV-2 three hours after ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH