Scientists Use Centrifuge to Discover a Hormone

A new method for isolating extracellular fluid aims to discover molecules with therapeutic potential that were previously obscured by highly abundant proteins.

Written byKatherine Irving
| 3 min read
a centrifuge from a birds-eye view, spinning quickly with a colored blur
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Muscles are not islands; to function harmoniously within the body, they must communicate with one another and with the brain. But precisely which molecules are involved in this communication has proven difficult to determine, as they’re often crowded out by other, more abundant biomolecules. Now, a group of scientists has figured out a faster and easier way to identify these molecules, according to a study published Friday (January 20) in Cell Metabolism. The new method could help researchers figure out how muscles talk and zero in on proteins that could be used in medicines.

“It’s remarkably simple,” says Christopher Newgard, a Duke University Medical Center molecular physiologist who wasn’t involved in the research. “Relative to other approaches to this in the past, it almost seems impossibly simple.”

Bruce Spiegelman, a cell biologist at Harvard’s Dana-Farber Cancer Institute and senior author of the paper, has been working with colleagues for more ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Katherine Irving

    Katherine Irving is an intern at The Scientist. She studied creative writing, biology, and geology at Macalester College, where she honed her skills in journalism and podcast production and conducted research on dinosaur bones in Montana. Her work has previously been featured in Science.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies