SCNT Picks Up Steam

Study confirms that somatic cell nuclear transfer, an alternate method of creating patient-specific pluripotent stem cells, can be used to reprogram adult cells.

Written byKate Yandell
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Blastocyst derived after somatic cell nuclear transfer. The green fluorescence originates from the somatic cell genome and marks nuclei.NYSCF, DIETER EGLIScientists at the New York Stem Cell Foundation (NYSCF) Research Institute, along with their international colleagues, have produced human embryonic stem cells (hESCs) by transferring the nuclei of skin cells from a 32-year-old type 1 diabetic woman into human eggs whose own nuclei had been removed, according to a study published today (April 28) in Nature. The researchers induced the hESCs to differentiate into insulin-secreting cells. They hope to eventually replace cells that type 1 diabetes patients lack with patient-specific insulin-secreting cells.

The publication comes hot on the heels of a study published earlier this month (April 17) in Cell Stem Cell that also showed the technique, called somatic cell nuclear transfer (SCNT), could be used on adult cells.

“This is the first report describing diploid patient-specific stem cell lines after somatic cell nuclear transfer, and together with the report that appeared . . . in Cell Stem Cell, it is also the first report on the derivation of diploid pluripotent stem cell lines from cells of an adult and from a human being after birth in general,” study coauthor Dieter Egli, a senior research fellow at the NYSCF, said during a press conference.

“This is an important demonstration that SCNT works and can be used to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control