Secrets of Breast Cancer Resistance

A new study shows that breast cancers that become resistant to hormone therapy have different patterns of estrogen receptor binding.

Written byTia Ghose
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A cluster of breast cancer cells undergoing programmed cell deathWELLCOME IMAGES, ANNIE CAVANAGH

Breast cancers may become resistant to standard hormone therapy because the estrogen receptor becomes reprogrammed to bind to different spots in the genome, according to a study publishing today (January 4) in Nature. The findings could provide clues for developing therapies to overcome resistance or diagnostics that could predict which patients are more likely to be resistant to hormone therapy.

“They have shown the pattern of binding is different between different types of tumors,” said medical endocrinologist Karin Dahlman-Wright of the Karolinska Institute in Sweden, who was not involved in the study. “If we could change the pattern of binding, we could maybe make the tumors responsive to the endocrine therapy.”

Roughly three-quarters of breast cancers require an estrogen receptor to grow. The receptor is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH