Show Me Your Moves

Updated classics and new techniques help microbiologists get up close and quantitative.

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

TRAVELING TOGETHER: A Paenibacillus vortex colony, 8 cm in diameter. The bright dots are dense groups of bacteria, termed vortices, that swarm collectively around a common center. As the cells replicate, the vortex expands and moves outward as a unit, leaving behind a trail of older, nonreplicating cells, which compose the branches. The leading vortices send signals to prompt the cells in the branches to generate new, fast moving vortices that become new leaders. (Color added; yellow indicates high cell density, red indicates low cell density.)COURTESY OF ESCHEL BEN-JACOB/INA BRAINISEver since Antonie van Leeuwenhoek espied the cavorting, swiftly swimming tiny critters he called animalcules through a small sphere of glass held in a metal frame, microscopes have figured into microbiological advances.

The stunning diversity of microbes, whether harvested from the human gut or scraped from the ocean floor, has increasingly led researchers to explore microbial behavior. As research entered the age of DNA, microscopes fell out of favor, and gaps in understanding the twitching, swimming, or creeping movements of microbes individually and as a colony have persisted.

Studying bacterial behavior requires techniques to view, track, and analyze these organisms in motion. Today, this involves new tools, such as genetically encoded fluorescent reporters, and improvements on old ones, such as quantitative methods for analyzing the complex swirls and spirals of bacterial colonies growing on agar plates. Even microscopes have made a comeback over the past two decades, thanks to the advent of small, relatively inexpensive cameras and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Marissa Fessenden

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours