Show Me Your Moves

Updated classics and new techniques help microbiologists get up close and quantitative.

Written byMarissa Fessenden
| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

TRAVELING TOGETHER: A Paenibacillus vortex colony, 8 cm in diameter. The bright dots are dense groups of bacteria, termed vortices, that swarm collectively around a common center. As the cells replicate, the vortex expands and moves outward as a unit, leaving behind a trail of older, nonreplicating cells, which compose the branches. The leading vortices send signals to prompt the cells in the branches to generate new, fast moving vortices that become new leaders. (Color added; yellow indicates high cell density, red indicates low cell density.)COURTESY OF ESCHEL BEN-JACOB/INA BRAINISEver since Antonie van Leeuwenhoek espied the cavorting, swiftly swimming tiny critters he called animalcules through a small sphere of glass held in a metal frame, microscopes have figured into microbiological advances.

The stunning diversity of microbes, whether harvested from the human gut or scraped from the ocean floor, has increasingly led researchers to explore microbial behavior. As research entered the age of DNA, microscopes fell out of favor, and gaps in understanding the twitching, swimming, or creeping movements of microbes individually and as a colony have persisted.

Studying bacterial behavior requires techniques to view, track, and analyze these organisms in motion. Today, this involves new tools, such as genetically encoded fluorescent reporters, and improvements on old ones, such as quantitative methods for analyzing the complex swirls and spirals of bacterial colonies growing on agar plates. Even microscopes have made a comeback over the past two decades, thanks to the advent of small, relatively inexpensive cameras and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies