Single-Unit Synthetic Ribosome

Scientists build a specialized ribosome with linked subunits that can translate designer transcripts in bacteria.

ruth williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Artist’s impression of conjoined ribosome subunitsERIK CARLSONIn every kingdom of life, ribosomes—the protein-synthesizing machines of cells—are comprised of two separate subunits. That is the way it has been for billions of years, but now, scientists have stitched the subunits together. In so doing, they have opened the doors to both new discoveries on the biology of these machines and possibilities for synthetic biology applications. The results are published today (July 29) in Nature.

“It’s a really clever paper and there’s a huge body of work that underlies it,” said molecular biologist Harry Noller of the University of California, Santa Cruz, who was not involved in the work.

“It’s very exciting,” added Yale University’s Farren Isaacs who also did not participate in the study. “It’s a key advance in understanding ribosome [function] and also in establishing a path to fundamentally alter the catalytic center of the ribosome . . . which will really allow you to start introducing new types of chemistries [and] producing entirely new classes of synthetic polymers.”

Molecular biologists often tinker with the machinery of cells to figure out how they work. But for ancient machines like the ribosome, such tinkering isn’t straightforward, said Alexander Mankin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide