Smell and the Degenerating Brain

An impaired sense of smell is one of the earliest symptoms of Alzheimer’s, Parkinson’s, and some other neurodegenerative diseases. Could it be a useful diagnostic tool?

Written byRichard L. Doty
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

© SILVIA OTTE/GETTY IMAGES

James Black, a 62-year-old London taxi cab driver, went to his doctor complaining of memory difficulties and intermittent periods of confusion that he’d been experiencing for 2 years. A minor road accident caused by poor concentration and vision problems had forced him to retire. His wife reported that for more than a decade James had also experienced difficulty smelling—a condition, called hyposmia, that was confirmed by olfactory testing. His neurological examination revealed he was suffering from damage to the brain’s frontal lobe. Ultimately, James was diagnosed with Alzheimer’s disease (AD), the most common dementia-causing disorder.1

OLFACTORY DIAGNOSIS: Patients with Parkinson’s disease (PD; bottom row) have fewer dopamine tranporters (labeled with radioactive ligands in brain scans on right) than healthy controls (top row). Because PD patients have associated olfactory loss, smell testing can help diagnosticians differentiate between PD and other neurodegenerative diseases that also show a decline in brain dopamine receptors. COURTESY OF JACOB DUBROFFJames’s situation is far from unique. Olfactory loss is not only an early warning sign of AD, but also of Parkinson’s disease (PD) and some other neurological disorders, presenting long before their classic clinical symptoms. Once such symptoms become evident, evaluation of olfactory ability—which is easily performed using commercially available smell tests—can help ensure the correct diagnosis and treatment strategy. Indeed, a number of diseases often misdiagnosed as AD or PD, such as severe depression or progressive supranuclear palsy, are accompanied by little or no smell loss. Thus, olfactory testing can be useful in differentiating between such oft-confused disorders.

Importantly, some disorders commonly misdiagnosed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH