Soil Microbes Sacrifice Ribosomes in Response to Warming

When soil heats up, microbes scale back protein synthesis machinery by making use of higher reaction rates that occur at higher temperatures, a study finds.

Headshot of Sophie Fessl
| 4 min read
Steam rises from a blue-gray hot spring, visible beyond a patch of reddish, rocky soil.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Sustained increases in soil temperature cause microbes to dial down protein synthesis over the course of years but potentially on the scale of weeks. At the same time, warming microbial populations increase their carbon dioxide production and growth rate, a study published in Science Advances on March 25 shows, suggesting that bacteria can adapt to changing environments, maintaining a high rate of cell division in the face of warmer conditions.

The study finds that “warming of any duration appears to lead to reduced need to invest in protein machinery, since the kinetic energy of warming accelerates enzymatic and metabolic rates in a compensatory way,” Kristen DeAngelis, a microbiologist at the University of Massachusetts, Amherst, who was not involved in this study, writes in an email to The Scientist. “This is a really exciting observation, and presumably one that should be generalizable across systems, not just to soils.”

In order to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Headshot of Sophie Fessl

    Sophie Fessl, PhD

    Sophie Fessl is a freelance science journalist. She has a PhD in developmental neurobiology from King’s College London and a degree in biology from the University of Oxford.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Faster Fluid Measurements for Formulation Development

Meet Honeybun and Breeze Through Viscometry in Formulation Development

Unchained Labs
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome